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The Fourier transform is then given as 

f (qz) = S(qz) * ~ exp(2rriqznc) 
n 

= [sin(ZrqzNc)/rrqz] * c-I E 3(qz - gz) 
gz 

= ~ sin[rr(q z - gz)Nc]/Jr(q z - gz)c. 
gz 

(21) 

Equation (2 l) is identical with (19) since (18) equals (20) 
and hence 

sin[n'(q z - gz)Nc] sin(n'q~,Nc) (22) 
-~-(-~-g-~ - sin(rrqzc)" 

gz 
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Abstract 

Based on the statistical theory of X-ray dynamical 
diffraction for thin films, the mosaicity of three types of 
semiconductor epitaxic layers has been investigated by 
analyzing their rocking curves by the X-ray double- 
crystal diffraction method. It is shown that the statistical 
theory can provide quantitative information on the 
mosaicity of the epitaxic layers such as the mean size 
and the mean disorientation of mosaic blocks in the 
layers. Some misunderstandings in interpreting experi- 
mental data are cleared up by taking into account the 
effect of diffuse scattering. It is emphasized that attempts 
to obtain structural parameters of specimens from their 
rocking curves by means of the Takagi-Taupin equations 
for coherent fields only are not strictly correct since 
diffuse scattering causes additional changes in the tails of 
the rocking curves. 
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Printed in Great Britain - all rights reserved 

I. Introduction 

As is well known, X-ray double-crystal diffraction 
combined with computer simulations has been accepted 
as a nondestructive and sensitive method in the 
investigation of the structure of semiconducting epitaxic 
multilayers. Structural parameters, such as the period, 
thickness, composition, lattice mismatch and perfection 
of the epilayers, can be obtained by analyzing rocking 
curves (RCs). With the recent development of semi- 
conductor techniques, device structures are becoming 
smaller and smaller. Therefore, it is important to 
characterize microdefects inside epitaxic layers and the 
state of interfaces because they influence the physical 
properties of materials and the quality of devices. The 
parameters describing the microdefects can be obtained 
quantitatively from X-ray diffuse scattering which has a 
contribution on the tails of the RCs. The key point is to 
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distinguish the diffuse scattering caused by the micro- 
defects in the epilayer from the radiation coherently 
diffracted by the average crystal lattice. 

Kato developed a statistical theory of dynamical 
diffraction to characterize the perfection of bulk crystals 
(Kato, 1980). Although the theory is applicable to 
general geometry, he dealt with the Laue case in detail. 
Bushuev (1989a,b) and Punegov (1991) modified the 
theory into a form suitable for the study of the Bragg case 
of X-ray double-crystal diffraction, in particular, for the 
study of multiple epilayers. 

In this paper, the statistical theory of dynamical 
diffraction is applied to investigate the mosaicity of the 
epitaxic layers. Three types of device structures of III-V 
compound semiconducting materials were investigated 
by simulating their RCs using a curve-fitting method. 
The degree of perfection of these device structures as 
well as the mean size and the mean disorientation of 
mosaic blocks in them were determined. It is shown that 
the statistical theory is necessary to characterize the 
epilayers correctly. 

2. Theoret ical  b a c k g r o u n d  

Real epitaxic layers often contain randomly distributed 
microdefects which cause local fluctuation in the lattice. 
The total displacement of atoms from their perfect lattice 
is given by (Bushuev, 1989a,b) 

u = (u) + 8u, (1) 

where (u) is a statistically averaged lattice displacement 
relative to the substrate, representing the modulation of 
the lattice constant along the growth direction, which is 
assumed to be z, the normal of the crystal surface, and 8u 
is the fluctuational displacement caused by microdefects. 

The presence of the microdefects leads to X-ray 
incoherent (diffuse) scattering as well as coherent 
scattering. These two scatterings are recorded in 
double-crystal diffraction RCs. The amplitudes of the 
transmitted and diffracted waves D0,g in Takagi's 
equations (Takagi, 1969) are modified by 

D0.g = D~.g + 8D0.g, (2) 

where O c -- 0.8 (D0.s) are coherent component fields, ,~Do,g 
are the fluctuations so that (gDo.g) = 0 .  Taking a 
statistical average of Takagi's equations, we obtain the 
following equations for coherent amplitudes: 

dO~o/dz = iaogE exp(ig.(u))~Og -/xD~, 
(3) 

dD~ / d z  = iagoE exp(-ig.(u))q~*D~ -/Z*Dg, 

where • = exp(-hpz), ~ = aoo - (agg - rl), lz = 
a0gag0(1 - E2)r, 17 - -r t~ tK/ lYgl ,  t3 = --2A0sin20B, 
aoo = rrxoK/Yo, aog = - ( r c x _ g K / Y o ) C ,  agg = 
-ZrXoK/Ir'gl and ag o = (r txgK/ lYgl)C.  

The static Debye-Waller factor, E = (exp ig.gu), is 
introduced to characterize the degree of perfection of the 
layers. The complex quantity 

OO 

r = f d ( e x p ( - i ~ 0 G ( 0  (4) 
0 

is the correlation length of the lattice fluctuation. The 
statistical distribution of microdefects over the multi- 
layers is determined by the correlati~ function 

G(0  = (1 - E2)-l((exp{-ig[gu(0 - 8u(0)]}) - E2). 

(5) 
In numerical calculations of the intensity of the 

coherent scattering, (3) is reduced to a one-dimensional 
differential equation of type (Taupin, 1964) 

d Q / d z  = - i A Q  z + BQ + iD, (6) 

where Q = (DC~/D~o)exp(ig(u)), A = ( lygl /Yo)l /2aogg~,  
n = (lYsl/Y0)~/2(/z - / z* )  and O = ( lYgl/Yo)l/2aogE~ *. 
Equation (6) can easily be solved by a recurrent formula 
(Takagi, 1969; Mai, Cui & He, 1990). Therefore, starting 
from the interface between the substrate and the epitaxic 
layers, we can obtain the reflecting coefficient at the 
surface of specimens whose complex square will be the 
intensity of the coherent reflectivity. The substrate can be 
treated as an infinitely thick crystal, so the reflecting 
coefficient at the interface can be calculated by the 
dynamical diffraction theory. 

In the Bragg geometry of X-ray double-crystal 
diffraction, both the diffuse absorption of the incoher- 
ently scattered waves and the coherent scattering of the 
diffuse waves can be neglected (Punegov, 1991). As a 
result, the intensity for the incoherently scattered wave 
/~ = 18 - / ~ ,  where 18 = (DgD~) and /~ = (Ds)(D*s), is 
obtained from the kinematic approach, 

l 

Ig = -21ago12(1 - E 2) f rr e xp ( - l z c z ) l~dz ,  (7) 
0 

where /x¢ is determined by photoelectric and diffuse 
absorption, l is the thickness of the layers and 
r r = Re(r). 

As in Kato's (1980) theory, the condition of applica- 
tion of the equations derived above has the form rr << A, 
where A is the extinction distance. 

We notice that when the thickness of a highly strained 
epilayer is larger than the critical thickness, misfit 
dislocations will be introduced. The presence of misfit 
dislocations will result in a local tilting of lattice planes. 
Thus, it can be assumed that a real epilayer consists of 
small mosaic blocks with dimension 10 << A, disoriented 
with the angular distribution W(a) (something like a 
mosaic crystal with dislocations). Moreover, these blocks 
are randomly displaced relative to the average lattice. 
This argument was conf'trrned by our first-principle 
computer simulations and cross-section TEM observa- 
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tions (Cui, Mai, Wu, Wang & Dai, 1991). Assuming 
W(ot) has a Gaussian distribution with an angular width 
.4,., we have (Bushuev, 1989b) 

E = Eb/[1 + (A"/Ao)2] 1/2 

and 

(8) 

rr = ( l o A o / 2 A ) e x p [ - - z r ( A O / A ) 2 ] ,  (9) 

is determined by the root-mean-square where E b 
displacement of the blocks, `40 is the angular width of 
the diffraction spectrum of the individual block and 
`4 = [(A") 2 +(A0)2] 1/2. Equation (9) is for a single 
layer. For multilayers, the value r r is a convolution of rr 
in (9) with the envelope function of the kinematic 
diffraction spectrum of the multilayers. In this case, Zr 
may be larger than the thickness of each layer but smaller 
than the total thickness of the multilayers. 

By fitting the measured rocking curves using a curve- 
fitting method, the structural parameters can be obtained 
with the aid of the above formulae. In analyzing the 
diffraction peak profile of our samples, we will neglect 
the diffuse scattering from the interface. This implies that 
the diffuse scattering from the defects in the epilayers is 
much stronger than the diffuse scattering from the 
interface roughness. When superlattices are relaxed, 
layers in the superlattice would be distorted to form 
mosaic blocks of some hundreds of nanometers (Cui, 
Mai, Wu, Wang & Dai, 1991). The size of the blocks 
may be larger than the thickness of one single lamella in 
the superlattices. For the superlattice sample studied, the 
average size of the blocks is about 400nm, i.e. each 
block is composed of 5-6 lamellar segments. In this case, 
the diffuse scattering from the interface roughness is 
negligible when compared to that from the defects in the 
layers. For samples with a small number of interfaces, the 
diffuse scattering from the interface roughness is much 
weaker. Thus, it is justified for us to neglect the diffuse 
scattering from the interface roughness in this work. 

in the tails of the curves. If the diffuse scattering is not 
taken into account, this effect may be incorrectly 
regarded as a modification of positive and/or negative 
strains in the layer. On the contrary, if it is assumed that 
the layer consists of mosaic blocks with a mean thickness 
10 = 170nm and a mean disoriented angle ~0 o = 115", the 
parameters E = 0.62 and r -- 355 nm, which character- 
ize the degree of perfection of the layer, are obtained. 
The theoretical rocking curve (Fig. l b) fits the experi- 
mental one (Fig. la) very well. 

Laser structures often consist of two layers with the 
same composition A above and below the active layer 
which has a different composition B. Recent experi- 
mental and theoretical studies showed that the wave 
fields in such an ABA structure exhibit an interference 
effect (Tanner & Hill, 1986). This effect may result in a 
splitting of the peak related to the two layers A. It is very 
sensitive to the composition and the thickness of layer B. 
This effect, however, may be strongly reduced by the 
presence of microdefects because the incoherent waves 
weaken the contrast of the interference fringes. There- 
fore, the structural parameters would be incorrectly 
estimated if the diffuse scattering was neglected. Fig. 2 
shows an experimental rocking curve and the theoretical 
simulations of an AI/Ga1_xAS ABA laser structure. In 
calculating Fig. 2(b), we assumed the structural 
parameters AIo 467Ga0 533As(900 nm)/Alo 155Gao 845As 
(95nm)/Alon67Gao533As(900nm) with E = 0.8 and 
r - 201 nm, while in calculating Fig. 2(c) by means of 
the Takagi-Taupin equations, we assumed the param- 
eters AlonTGao53As(900nm)/Aloln6Gao854As(260nm)/ 
Alo 47Gao 53As(750 nm). It is clear from the inset of Fig. 2 
that the total diffracted intensity is the sum of the 
coherent and incoherent components simulated by 
statistical theory while the Takagi-Taupin equations 
only consider the coherent component. This is the reason 
why Fig. 2(b) fits Fig. 2(a) well. Therefore, the statistical 
theory gives us a correct estimate of the structural 
parameters. 

3. Experimental results and discussions 

Three types of device structures were investigated in this 
work. The experiments were carried out on X-ray 
double-crystal diffractometer with CuKoq radiation. 
The first crystal was Si(111) and the 004 reflection. All 
samples studied in this work were grown by molecular- 
beam epitaxy (MBE). 

Fig. 1 shows a (004) diffraction rocking curve for 
In047Gao53As(300nm)/InP single heterostructure. One 
can see a considerable increase of intensity in the tails of 
the layer peak in Fig. l(a), which is due to the diffuse 
scattering. Comparing Figs. 1 (b) and (c), one can see that 
attempts to obtain structural parameters of the specimens 
from rocking curves by means of the Takagi-Taupin 
equations for the coherent fields only are not strictly 
correct, since diffuse scattering causes additional changes 

L "5" 
4 

. . . . ' '  • (a) 
. ~  - ' "  . . .  . . . . . . . . . .  . . "  . . . . .  

. . . . . . . . .  
o 5 o o  - looo - I soo  

Relative angle (arc see) 
Fig. 1. (004) diffraction rocking curves of Ino47Gaos~As/InP single 

heterostructure. (a) Experimental; (b) statistical theoretical simula- 
tion; (c) Takagi-Taupin-equation simulation. 
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The structures of superlattices are more complicated. 
Their diffraction patterns are more strongly influenced by 
diffuse scattering. An abrupt variation in the layer 
thickness and/or the composition leads to the superlattice 
subpeaks occurring in pairs or being accompanied by 
strong oscillation fringes (Li, Mai & Cui, 1993). 
However, the superlattice subpeaks will be broadened 
when the layers are imperfect. These broadened subpeaks 
would be incorrectly interpreted if one did not consider 
the presence of structural defects in the superlattices. 

Fig. 3(a) is the experimental (004) diffraction rocking 
curve of a nominal Ino.15Gao.85As(70,4,)/GaAs(100A) 
superlattice with 15 periods. It looks like a diffraction 
pattern from a superlattice with uniform structural 
parameters. This leads to the result, simulated by means 

c- 
(1) 
c- • ( a )  

. . . . .  . 

~ (c) 

-100 -200 0 100 

Relative angle (arc sec) 
Fig. 2. (004) diffraction rocking curves of AIxGal_xAS ABA laser 

structure. (a) Experimental; (b) statistical theoretical simulation; 
(c) Takagi-Taupin-equation simulation. Inset: the total diffraction 
intensity (solid line) is the sum of the coherent (dot-dashed line) and 
incoherent (dotted line) components. 

o 

-4000 

A J 
(c) 

(d) 

-2000 0 2000 
Relative angle (arc sec) 

Fig. 3. (004) diffraction rocking curves of InxGa,_xAs/GaAs super- 
lattice. (a) Experimental; (b) statistical theoretical simulation 
assuming an abrupt variation in structural parameters; (c) Takagi- 
Taupin-equation simulation with the same abrupt variation as (b); 
(d) Takagi-Taupin-equation simulation without abrupt variation. 
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of the Takagi-Taupin equations, Ino.~2Ga0.88As(68A)/ 
GaAs(85 A) [see curve (d)]. But it is evident that the 
-1-1 st-order peaks in curve (a) are not the same. If we 
assume abrupt changes of thickness and composition in 
the superlattice, we obtain curves (b) and (c) by the 
statistical theory and by the Takagi-Taupin equations, 
respectively. Although the asymmetry of the +1 st-order 
satellite peak is predicted in Fig. 3(c), the difference 
between (a) and (c) is still great. However, Fig. 3(b) is 
in good agreement with the experimental data. The 
optimum parameters used in the simulation are: periods 
1-7, Ino.12Ga0.88As(68,~)/GaAs(85,A); periods 8-15, 
Ino.laGao.86As(72A)/GaAs(84A); we obtain E = 0.66 
and r -  350nm for the superlattice as a whole. It is 
believed that the structural parameters derived from the 
statistical theory are closer to the real structure of the 
samples. 

4. Summary 
The statistical theory of X-ray dynamical diffraction for 
thin films has been applied to characterize the mosaicity 
of epitaxic layers. The theory enables us to characterize 
quantitatively the perfection of the structures as well as 
thickness, composition and strain relaxation of the layers 
from the X-ray double-crystal rocking curves. The 
validity of the present analyzing method was confirmed 
by studying three types of semiconducting device 
structures. Some otherwise wrongly interpreted experi- 
mental data were corrected by taking into account the 
effect of diffuse scattering. Moreover, it was emphasized 
that attempts to obtain structural parameters of the device 
structures from RCs by means of the Takagi or Taupin 
equations for coherent fields only are not strictly correct 
since diffuse scattering causes additional changes in the 
tails of the rocking curves. 
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